

create a story and good game experience with both interesting and

meaningful choices.

2.1 Dungeon Master
In table-top RPGs, the Dungeon Master (DM) is the “God” of the

game [13]. The player’s available actions are ultimately ruled by

what the DM will allow in a game. Because of the critical role the

DM has in the experience, each game is heavily influenced by the

DM’s abilities. An unsatisfactory DM is incapable of properly

negotiating their overall vision of the story with their players’

actions. There are two styles of bad DMing, falling at opposite

ends of a DM story control spectrum.

On one side of the spectrum is the “railroading” DM. This style of

DM has a story in mind and does not allow the players to deviate

from it. Players are given no meaningful choices within the game,

as their actions have no effect on the progression of the game.

When a player offers an action that does not fit the DM’s ideal

storyline, it is not allowed. A more skilled DM will allow an

action, but adapt the story such that the action ultimately does not

have a negative effect on the story.

For instance, in “DM of the Rings,” a satire comic based on a

railroading DM, one of the players attempts to dismount from a

warg. The DM has already decided that the player and warg will

fall off a cliff, so he disallows the player to dismount, even given

the player’s dice roll [31]. A more skilled DM would have

allowed the player to dismount, but caused another game action to

lead to the same DM-desired outcome without the player feeling

as if his actions didn’t matter at all.

On the opposite end of the continuous spectrum, a DM that does

not exert any control over the game’s story ends up with chaos, or

worse, boredom instead of a good gaming experience. This is due

to a lack of interesting choices; the player cannot make informed

decisions because there is not enough information available.

With such a large world and so many options, players often feel

lost and unsure of where to go. Without any guidance from the

DM, the players will get easily side-tracked or bored with the

gaming experience. Experienced players may use their previous

gaming sessions to guide them through the game, but without any

constraints, the game lacks focus and interesting choices, and can

become an exercise in frustration [13].

Bad DMs are of particular interest to us because they are

analogous to styles of game play within computer role-playing

games. We will discuss this in more detail in the next section.

3. COMPUTER ROLE-PLAYING GAMES
Throughout the late ‘70s and early ‘80s, table-top role-playing

games found their way into the computer domain. The well-

defined combat rules from Dungeons & Dragons easily translated

to the systematic nature of computers. Computers had an

advantage over the table-top counterparts in that the computer

could quickly and easily store all the rules for the game and

effortlessly calculate turns within the combat. Instead of a single

encounter taking possibly hours; it could be completed within

minutes or even seconds, allowing for more progress in a shorter

time.

However, the playable storytelling aspects of table-top RPGs were

more difficult to represent, and as such have long been under-

represented in computer role-playing games. CRPG gameplay

instead focuses on battle, allowing very few player choices

outside of those related to combat.

Due to the lack of storytelling support, CRPGs tend towards the

two extremes of bad DMing mentioned in the previous section.

Many classic CRPGs, such as the Final Fantasy series [27], have

finely crafted stories which the player is railroaded into playing.

While the stories may be grandiose and well-constructed, the

player lacks meaningful choices, and is thus merely a character in

someone else’s pre-arranged story. In fact, major elements of such

CRPG stories are often presented in non-interactive “cut-scenes”

(linear animations) driving home the fact that they are a part of the

game that cannot be played, only consumed in set form.

At the other extreme are games such as Oblivion [2], open worlds

with a multitude of options for the player, but the overall player

experience lacks cohesion and interesting choices for the player.

Oblivion’s designer, Ken Rolston went so far as to point out while

designing the game, he kept in mind, “In games, stories suck, so

focus on the other elements of narrative: setting and theme” [23].

These shortcomings lead Chris Crawford to point out, “no games

have approached what a good DM could do with players around a

table” [11]. How can this be addressed? One option would be to

completely eschew CRPG conventions and develop a new game

genre. We, however, are interested in extending the CRPG genre.

We are encouraged by the fact that stand-out games within the

genre such as Planescape:Torment [7], Knights of the Old

Republic [6], and Baldur’s Gate II [4] all have stories that are

more playable than games at the polar extremes of the DMing

spectrum. They accomplish this through embedding interesting

and meaningful choices within their systems of quests – the main

mechanism currently used in CRPGs to deliver story to the player,

one related to quests in literature and table-top RPGs.

4. QUESTS
Jeff Howard describes a quest as “a goal-oriented search for

something of value” [14]. The quest for the Holy Grail in

Arthurian stories is a familiar example of a legendary quest. This

style of quest is often used within table-top RPGs by DMs to give

a general direction for player actions.

In a table-top RPG, the quest does not need to be followed, or the

players can choose to solve the quest in a multitude of ways. For

instance, a quest to overthrow a tyrannical king can be solved by

combat (kill the king), subterfuge (convince the king’s followers

to dethrone him), diplomacy (work with nearby kingdoms to

remove the king from power), or any other way the players can

imagine – and convince the DM to allow.

Taking the lead from table-top RPGs, computer role-playing

games also use quests as a staple in gameplay [14]. Quests are

often used to direct the player through the game’s story, or to give

meaning to the player’s actions. On the surface, this is very

similar to the quest structure in table-top role-playing games,

where the DM often provides at least a main quest that the players

use to direct their actions. However, in a CRPG, there is often

only one way to fulfill a given quest, with a combat-based

solution being the most prevalent.

There are games that are exceptions to this, especially the stand-

out games mentioned above such as Planescape: Torment and

Morrowind. Both Planescape and Morrowind, for example,

integrated non-combat solutions to a selection of its quests,

allowing players to choose whether to take a traditional combat

role or to fulfill one of the other supported solutions to complete

the quest. But, given current tools, such multiple-solution quests

are burdensome to implement and highly bug-prone. For instance,

in Morrowind, there are quests where you can choose to kill a

specific NPC or find another non-violent solution. Regardless of

the choice made by the player, they can later receive a quest

which requires them to talk to the NPC that they may or may not

have killed. This not only demonstrates the bug-prone nature to

this approach, but also shows that the choice the player makes

does not truly affect the storyline.

In part for these reasons, far more prevalent is the absence of

player choice in quest actions, which becomes even more

noticeable in Massively Multiplayer Online Role-Playing Games

(MMORPGs). In an MMORPG, the game world is persistent,

which means that the game continues to run even when a player is

not playing. Up to thousands of players are simultaneously

playing the game on a central server; therefore the game must

support each of these playing experiences. Due to the persistence

of the game world and the large number of simultaneous users,

there is rarely a central story arc (an exception to this is A Tale in

the Desert [12] which resets the game world to the beginning state

once a year, thereby having an “end” to the story). Quests are used

mainly to give thematic meaning to the supported player actions –

typically fighting with enemies scattered throughout the world –

and to move players towards areas suitable for their level.

Quests are popular in both single-player and MMORPGs;

however the online worlds have thousands of quests to examine.

While we are going to briefly focus on quests in the extremely

popular MMORPG World of Warcraft (WoW) [8], the issues we

discuss are found in almost all CRPGs. There are a number of

quest taxonomies suggested for WoW; we combined and adapted

the systems available to make the following taxonomy [15, 21,

29]:

• Kill X number of enemies (where X may be 1, and the

enemy unique)

• Kill enemies until X number of a specific item drops

(where X may be 1+)

• Collect X number of specific items from the

environment (where X may be 1+)

• Deliver an item to a specific NPC.

• Talk to someone specific.

• Escort someone.

• Use a special ability.

As this taxonomy begins to highlight, in WoW the majority of the

quests and experience points received are related to activities that

revolve around killing. To illustrate this further, we examine the

second expansion of World of Warcraft: Wrath of the Lich King

[9], which was released in late November 2008. One of the first

regions (called zones) that a player can choose to explore is

Howling Fjord. In this zone, there are 133 quests available to an

Alliance player. Breaking down these quests into the above

taxonomy and then weighting the categories based on the

experience received for doing each quest illustrates the continued

combat-centric game design.

Of the 133 available quests, 55% of the quest experience comes

from straight kill-based tasks of the type “Kill X number of

enemies,” “Kill a specific named enemy,” or “Get X number of

items from killing enemies (drops).” Furthermore, 22% of the

experience is received from collection-style quests, most of which

require collecting items from areas that are infested with enemies.

Additionally, the only ways to gain experience in World of

Warcraft are to complete quests, kill enemies, or discover new

areas. The experience received from discovering new areas only

accounts for a minute portion of the overall experience received

by a player.

5. TASK-BASED vs. GOAL-BASED

QUESTS
Most striking about the style of quest described above is how

different these quests are compared to the definition provided by

Jeff Howard. In his description, the key concept is that of a “goal-

oriented search.” In contrast, most contemporary CRPG quests

present the player with a checklist of actions to take to complete

the quest. The goal is to complete the list; there is no player

choice involved other than whether they choose to complete the

quest or not.

In such quests, which we refer to as task-based quests, this list of

tasks provides the player with the collection of non-optional

actions that must each be completed in order to complete the

quest. In contrast, a goal-based quest presents an end point, or

goal, for the player to achieve. The player chooses, within the

constraints of the game world and mechanics, how to reach the

given goal.

An example of a task-based quest that could be found within

many RPGs is the quest to save a farm from wolves. A farmer will

give a player a task of killing the wolves to save the farm. The

player must kill the wolves in order to receive the reward for

completing the quest, regardless of class or role-playing

preferences. In contrast, a goal-based quest would simply explain

to the player that there are wolves killing the local livestock. The

player would then be allowed options for completing the quest.

They could still kill the wolves if they choose, but other options

would be available such as creating better fencing or helping

restore the local deer population so the wolves no longer have to

hunt livestock. In this way, the player is able to make an

interesting choice (no choice is clearly better than the other) based

on class, race or personal preference. With the inclusion of these

choices having a meaningful effect on the game (e.g. different

quest rewards, game world evolution, or even affecting future

quest and solution availability), quests become playable.

The existence of player choice in how quests are completed is the

key difference between goal-based and task-based quests. Early

adventure games such as The Secret of Monkey Island [17] and

King’s Quest [26] games often presented the puzzles within the

game as a quest for the player to fulfill: “Become a pirate,” “Save

the mayor,” “Save the land”. While on the surface these seem like

goal-based quests, there was in fact no player choice involved in

quest completion. This could easily lead to frustration where the

player would be searching for the solution the designers had

chosen for each quest, even though there were other options that

made sense to the player but were not supported.

For example, in Monkey Island there exists the simple goal of

getting past some deadly piranha poodles. At this point in the

game, the player has become a swordmaster, but they are not

allowed to fight the poodles, they must go find the exact item

required to pass the dogs. The player has a chunk of meat, but this

alone is not exactly what is required. Using the meat with grog

(potent alcohol) does not work, but instead the player must

eventually realize that they need to use the meat with a small

flower they (hopefully) found while walking through the woods to

drug the meat. Until the player stumbles upon this solution, they

cannot progress further in the game.

This frustration is at heart caused by the fact that these quests

were presented as goal-based quests, but were actually task-based

quests with opaque specifications. A true goal-based quest allows

for interesting player choice, where there are multiple ways to

fulfill the quest, and one solution is not obviously better than the

others.

5.1 Agency
Giving the player interesting choices with which to solve their

quests relates strongly to the theory of agency within game design

literature. In particular, Wardrip-Fruin, et. al. describe agency as

“a phenomenon involving both player and game, one that occurs

when the actions players desire are among those they can take

(and vice versa) as supported by an underlying computational

model.” [30]

Achieving agency, in this account, does not require enabling

players to "do anything." In fact, it is in many ways the opposite.

It requires crafting the dramatic probabilities of the fictional world

and developing player understanding of the underlying

computational system so that the two are in concert with one

another.

We see a version of this in traditional tabletop role-playing games.

A set of dramatic probabilities are established for characters that

connect to the underlying game system. For example, the

expectations for classes like Wizards and Clerics – and races like

Dwarves and Elves – are in part derived from literary sources

(e.g., Tolkien) and in part formed by player knowledge of the

game system (e.g., Clerics have a wide range of healing spells,

Elves are generally better at agility-heavy tasks than Dwarves).

These then come into action during gameplay, as players use their

characters to attempt actions that are appropriate both to the

dramatic probabilities of the situation and the specifics of their

character – one doesn't role-play Aragorn and Gandalf the same

way, even if they find themselves in the same situation. The DM

facilitates play that is appropriate to the different dramatic

probabilities of each character, using the rule system, enabling an

experience of agency.

This connects directly to our critique of quests in current

computer role-playing games. Because they are fixed lists of

tasks, they assume that the dramatic probabilities are the same for

a fighting character, a healing character, and a stealthy character.

They assume the probabilities are the same for a character no

matter what quests they have completed in the past, what special

abilities they have, and so on. This, in turn, requires that combat

be the center of almost every quest – because this is one of the

few things that every character can do, even if it doesn't always

make dramatic sense if we take characters seriously.

Our research is motivated in part by this mismatch. We want to

enable quest authors to create quests, with a tractable amount of

effort, that provide dramatically appropriate paths for different

sorts of characters – both in their fictional and game system

representations. Beyond our near-term research, we are also

interested in directions that will make it possible to dynamically

alter and generate portions of quest structures to support dramatic

probability for a wide range of characters with no more authoring

effort than is required with today's relatively clumsy quest

authoring tools.

6. PROPOSED EVOLUTION WITHIN

CRPG QUESTS
We are not the first to note the need for a system that better

models the collaborative nature of the DM and players. In Hamlet

on the Holodeck, Murray mentions that in the future, the challenge

in games will be to “capture a wider range of human behavior

than treasure hunting and troll slaughtering” [20]. Many games

are limited to these actions because more complex actions require

a more complex gaming system. Adding to this in Character

Development and Storytelling for Games, Sheldon mentions that

video games “need to be able to adjust to the improvisation of

players” [25].

More specifically, Susana Tosca states, “In computer games, we

need to prepare the quest events in a much more fixed way [than

table-top RPGs.] The result is less lively and immersive […] To

my mind, the success of pen&paper games is precisely in the

common creation of a story […] that depends on all participants

being human and changing the script constantly” [28].

Spurred by this, we are proposing a system called The Grail

Framework that supports playable quests; quests with interesting

and meaningful choices. This framework allows authorial control

over the world via designer goals similar to a Dungeon Master

presiding over a table-top game. We create player choice by

supporting an RPG system that allows for goal-based quests with

multiple solutions. The quests and solutions available to the player

are shaped by the player’s own history such as where the player

has traveled, who they have talked to, and how they have solved

previous quests.

To create enough content for the player to be able to make these

choices requires much more work from the designer. Not only is

there the issue of content generation, but it is also difficult for the

designer to keep track of the inter-dependencies between quest

lines and quest solutions. Because of this, it is necessary for the

Grail Framework to also contain author support tools such that

designers are realistically able to create the content required for

such a system.

7. QUESTBROWSER
To truly achieve playable quests, the designer will need to be able

to create a large number of possible solutions for each quest. We

have created the QuestBrowser brainstorming tool as part of the

Grail Framework to help designers with this challenge as well as

help alleviate the difficulties in thinking up multiple interesting

solutions for each quest.

There are other quest generation and design tool systems currently

being developed. ScriptEase [18] is a designer tool created to

work with the NeverWinter Nights [5] Aurora toolset [3].

ScriptEase follows a pattern-based approach to authoring, with

many of the common designing tasks available as a pre-scripted

selectable component in the tool. Many of the standard quests

regularly found in CRPGs are available as patterns in the quest

library. These patterns are extensible so that a designer is not

restricted to just the quests available in the library. Once created,

these quests are available within a NeverWinter Nights module,

but unlike the Grail Framework, the quests are statically placed,

do not change based on the player’s actions, and are unlikely to be

goal-based (but are instead task-based).

Charbitat is another example of a world that uses a quest

generation system. Specifically, it is a procedurally generated

world which includes a lock-and-key style quest creation system

that works in conjunction with the terrain generation. Charbitat

implements quests based on spatial progression through the world

[1]. As the level is generated, a quest can be created on a new tile

which uses the world state as context for the goal of the quest.

Unlike the Grail Framework, quests within Charbitat are

generated without author input, but are based instead on the tiles

the system is generating.

8. SYSTEM DETAILS
QuestBrowser is a GUI interface that leverages the common-sense

database ConceptNet3 [16] to find links between quest-related

ideas. One of the benefits of using ConceptNet is that the database

is able to easily supply relationships between objects that are

unusual or surprising in some way as it does not have a personal

bias or preference for a specific outcome.

ConceptNet3 structures its data by storing concepts as nodes

which are connected to other nodes based on their relationships.

There are currently twenty discrete relationship types, such as

PartOf, ConceptuallyRelatedTo, UsedFor, CapableOf, and

LocationOf.

ConceptNet3 is mined from a crowdsourced corpus of natural

language sentences about the world, and consequently contains a

fair amount of noise. Through experimentation we determined

that it is necessary to limit which link types we use, eliminating

the most abstract link types, such as ConceptuallyRelatedTo, in

order to not swamp generally useful quest suggestions in a sea of

bizarre results.

We use ConceptNet3 in particular because each concept / relation

/ concept pairing is scored by other users. This score is stored in

the database and available for use in filtering responses returned

by the system. We also limit the length of the paths returned by

ConceptNet to 5 nodes. This was chosen after experimental runs

showed a higher number of noisy results when paths became too

long. Requests to the database also began to noticeably slow down

when paths became 6 nodes or longer.

In our interviews with Sony Online Entertainment quest

designers, it became clear that the user interface was an

overlooked portion of quest design tools. While we are not

primarily working on the human-computer interaction elements of

the quest-building problem, it is still important that the designers

be able to successfully use what we create. We increase the

chances by presenting a basic graphical user interface (GUI),

rather than asking quest builders to perform actions such as hand-

specifying complex database queries or entering the same variable

name in multiple text files.

To interact with the system, a designer supplies the GUI tool with

a quest concept, and, optionally, a possible quest objective. The

system returns a list of linked paths through the knowledge space

that connect the starting concept and quest objective specified.

This gives the designer possible ways reason about the

relationships between these objects.

If a designer does not specify a goal or objective, QuestBrowser

will show all nodes directly connected to the concept node

chosen. In this way, if the designer has a concept in mind, the

QuestBrowser tool can help the author think of quest goals.

As an example, the designer may choose to create a quest that is

located in a church, forest, cave, alley, or city. The designer can

be as specific or general as they would like. When the designer

enters one of these locations into QuestBrowser, a list of concepts

associated with the location specified is created. If the designer

decides they would like to create a quest for a cave, QuestBrowser

will generate a list of concepts including underground, dark, and

mine among others.

Given these concepts, the designer may decide that they would

like to make a quest involving a darkened underground room with

the objective of finding light so that a player may cross the room.

Certain ideas may initially come to mind, such as finding a torch

or building a fire. However, the brainstorming tool will return a

table displaying all paths with 5 or fewer concepts between

underground and light, showing ideas that also make sense but

may not come to a designer’s mind.

The following are some examples returned by QuestBrowser for

the situation above:

Underground (At Location)– Rock –(Part Of) Moon

–(Capable Of) Light

Underground (At Location)– Fungus –(Capable Of)

Bioluminescence –(Capable Of) Light

Underground (At Location)– Coal –(Used For) Burn

–(Capable Of) Light

Using the UI, the designer is able to manipulate the quest paths

found by requiring or excluding nodes, constraining the types of

links between the nodes and requiring results to be above a certain

reliability score. This allows the author to narrow down the field

of results in a way that suits their needs.

In unassisted quest authoring, the designer has to imagine

properties of a location that the player might change (such as

dark), and imagine ways to change them. Using a brainstorming

tool such as QuestBrowser, designers discover interesting and

unusual quest possibilities, lowering thes creativity burden of

creating interesting and meaningful choices for the player when

presented with a quest.

8.1 Nodes
Each concept is stored as a node within ConceptNet. Nodes are

represented as “Subjects” within our GUI. Because of the nature

of the corpus of the ConceptNet data, we felt it was important to

give the designer the ability to restrict the results in various ways.

For some designers, results returned might be funny, while for

others, it would be inappropriate. An example of this is the

following solution returned for the Start State: Underground, and

the Goal State: Light.

Underground (At Location)– Oil –(Used For)

Eating –(Creates) Gas –(Used For) Light

For these cases, the designer is able to exclude the Eating node

from any further responses if they would like to avoid these types

of solutions. The designer is also able to require nodes. For

instance, if the designer wished to see more solutions using the

idea of Oil, they could require it in further solutions, and only

paths including the node Oil would be shown.

8.2 RelationTypes
ConceptNet links nodes based on the type of relation between

them. These are unidirectional links, so while “oil” has the link

“At Location” to the node “underground”, there is not necessarily

a link from underground to oil. For this reason, it is important to

allow the tool to traverse links in both directions to find the

relations between nodes. Otherwise, the results returned are

unnecessarily limited by the system.

To increase the authorial power of the tool, we have given the

designer control over which relation types are used in the results.

In this way, the designer is able to narrow down the results

returned. For instance, some designers may wish to know the

temporal relation of subjects, and will want the results to include

relation types such as Has Subevent, Has Prerequisite, etc., while

another designer may wish to exclude those types of relationships

from their results.

These constraints are not always necessary, and often the default

relationship links return usable quests. For instance, choosing

church as the original concept and heal as the quest objective

generates the following non-obvious idea as one of its solutions:

Church –(LocationOf) Music –(CapableOf) Heal

8.3 Example
To illustrate how a designer might use the QuestBrowser tool, we

have created the following example. In our fantasy setting, there is

a wooded town named “Forest Song.” At this point, the designer

wishes to create a set of quests involving the town. To begin this

process, the author would need to identify a problem within the

town that needs solving. Entering Forest and Song into the

QuestBrowser system, the designer gets a set of results including

the following:

Forest –(LocationOf) Bird–(CapableOf) Music –(PartOf)

Song

This result helps spark an idea for the designer, who then decides

that the town of Forest Song was named for the sound of the birds

in the forest, but the birds have now ceased singing. This is used

as the initial background issue within Forest Song for the player to

solve. Therefore, the quest within Forest Song is to find out why

the birds have quit singing, and to find a way to make the birds

sing again.

The next step for the designer is to identify possible solutions for

the player. The first step is to find a solution to “Why are the birds

not singing?” For this step, the designer may choose to only have

one reason. Using the QuestBrowser system, the designer asks for

the list of results for the input “Bird”. Looking through the results,

the designer notices:

Bird –(Has Property) Fearing Cat

Following up on this idea, the designer decides that there are wild

cats in the area that are scaring the birds, which in turn is causing

them to no longer sing. For the sake of simplicity in this example,

this is the sole reason behind the birds not singing.

Now that the designer has decided why the birds are no longer

singing, a goal for the player to achieve has also been decided.

The goal of the quest is for the player to get the birds to sing again

by dealing with the wild cats.

The next step is for the designer to find solutions for this quest.

While a typical role-playing game would have the player merely

kill the wild cats, this designer would like to support non-violent

solutions. Once again, returning to QuestBrowser, the designer

starts with the concept “cat” to see what is returned. Some of the

responses are:

Cat –(Desires) Milk

Cat –(Desires) Not Be Wet

Cat –(Desires) Catnip

Cat –(HasProperty) Curious

Cat –(LocationOf) Out Of Bag

Given these responses, the designer makes a list of possible

solutions. Using the results above, in our example, the designer

creates four solutions which are based on the class of the player.

The first solution is to allow the player to simply kill the wild cats

to rebalance the population. This is an appropriate solution for a

fighting style of character that prefers combat. As stated above,

this is the type of quest that would be most common in current

RPGs. However, the designer is able to create other quests which

alter the dramatic probabilities for other play styles.

For characters that are stealth-based, a second solution uses the

idea that cats do not like to be wet. The player is able to stealth

past the cats to the area that the birds are nesting. Once there, the

player can create moats around the nesting trees such that the cats

will not cross. This allows the birds to return to their nesting

grounds and the forest to be filled with bird song once again.

Spell-casting characters are able to solve the quest using the

knowledge that cats desire catnip. They can create a poultice

using catnip which allows the villagers to befriend the cats. Once

befriended, the town villagers can take care of their new feline

friends, which will no longer hunt the birds as they will be

properly fed.

Finally, the last solution is a bit tongue-in-cheek and uses the

concept of “letting the cat out of the bag.” The player can use milk

and cats’ natural curiosity to tempt the cats into bags. Once

bagged, the cats can be moved to a new location with plenty of

mice for the cats to eat. This solution is one that any style of

player can complete.

In this example, it is important to note that the designer is still a

key part of the design process. QuestBrowser is a tool to help the

designer think of possibilities that use common sense, but the

designer is necessary in putting it all together. Additionally,

QuestBrowser is not domain specific, so it is up to the designer to

decide if or when quests should be class or player specific.

9. DISCUSSION
Quests in computer role-playing games (CRPGs) are generally not

playable in their current form, given that some form of choice is

necessary for gameplay. Even more is required for good

gameplay. But there are no interesting nor meaningful choices for

a player to make in most CRPG quests. Instead they are handed a

to-do list to check off as they follow the instructions precisely.

Rolston quips, “I hate getting quests. I hate the toil of completing

quests. I hate the formal and predictable resolution of quests. At

best, I feel a Puritan sense of rectitude for laboring dutifully, of

doing my duty to uncover the fog of narrative war” [23].

If quests are to become a goal-based search for something of

meaning as Howard suggests, we must move away from the

“formal and predictable resolutions,” and the “toil” associated

with completing a quest.

The quests that Rolston hates are in fact those implemented in the

task-based system so prevalent in today’s CRPGs. There are no

interesting or meaningful choices, so instead they require “toil” or

are considered a grind. In many recent MMORPGs, quests are

used merely as a thin cover for the very grinding behavior that

players complained about in earlier MMORPGs.

Our proposed system, the Grail Framework, supports goal-based

quests, granting multiple choices to the player that will impact

future quests. Quests and solutions are made available based on

player history. This more closely follows the model adopted by

many good DMs within table-top RPGs.

Making the move from task-based quests to a goal-based adaptive

quest style also allows for interesting and meaningful player

choices – their choices now influence the future game, and

different solutions are supported for each quest.

In order for the designer to realistically be able to create the

number and variety of solutions required for playable quests, we

created QuestBrowser to aid the designer in quest creation.

QuestBrowser is built upon a common-sense knowledgebase

created by thousands of people, therefore the knowledgebase does

not have the biases or preferences that just one person would.

Consequently, using this system allows the designer to see past

their own quest preferences and routines, finding new and

innovative solutions for each quest. This keeps the player engaged

as they are offered interesting choices at each quest, instead of the

same single solution that is common in many modern-day CRPGs.

Further, the overall Grail Framework aims to create playable

variety in how quests are introduced and situated, while

simultaneously taking care of much of the “grunt work” that

today’s quest designers must shoulder (which particularly makes

quests with multiple solutions burdensome to implement).

10. FUTURE WORK AND CONCLUSION
As we stated in the beginning of this paper, the Grail Framework

is an ambitious project, and there is much work left to be done.

Our next focus will be on creating an initial implementation of the

back-end system to support quests with multiple solutions.

To test the feasibility of the system, we will be prototyping

throughout the development process by creating an online game

available to many players. It is necessary for the system to be

play-tested by many players so that we can investigate the depth

which the game supports different playstyles. It will also be

important to receive player feedback on whether the players feel

that they have real choices within the game.

Tosca states that “…the success of pen&paper games is precisely

in the common creation of a story. […] Paradoxically, this is what

cannot be reproduced by computer games” [28]. We feel that

while the success of pen&paper games might not be able to be

reproduced exactly without the creation of an AI-complete DM,

our system will move CRPGs one step closer towards the depth of

story table-top games have enjoyed, while retaining the strengths

that have made the CRPG a successful game genre.

11. REFERENCES
[1] Ashmore, C. and Nitsche, M. 2007. The Quest in a

Generated World. In Situated Play: International Conference

of the Digital Games Research Association. (Tokyo 2007).

[2] Bethesda Softworks. 2006 Elder Scrolls IV: Oblivion.

[3] BioWare. 2002 Aurora Engine Toolset.

[4] BioWare. 2000 Baldur's Gate II: Shadows of Amn.

[5] BioWare. 2002 NeverWinter Nights.

[6] BioWare. 2003 Star Wars: Knights of the Old Republic.

[7] Black Isle Studios. 1999 Planescape: Torment.

[8] Blizzard Entertainment. 2004 World of Warcraft.

[9] Blizzard Entertainment. 2008 World of Warcraft: Wrath of

the Lich King.

[10] Costikyan, G. 2007 Games, Storytelling, and Breaking the

String. In Second Person: Role-Playing and Story in Games

and Playable Media, P. Harrigan and N. Wardrip-Fruin, Eds.

Cambridge: The MIT Press.

[11] Crawford C. 2003 Chris Crawford on Game Design.

Indianapolis: New Riders Press.

[12] eGenesis. 2003 A Tale in the Desert.

[13] Fine, G.A. 1983 Shared Fantasy: Role-Playing Games as

Social Worlds. Chicago: The University of Chicago Press.

[14] Howard, J. 2008 Quests: Design, Theory, and History in

Games and Narratives. Wellesley: A K Peters, Ltd.

[15] [Karlsen, F. 2008 Quests in Context: A Comparative

Analysis of Discworld and World of Warcraft. Game Studies

Journal, vol. 8, no. 1 (September 2008).

[16] Liu, H. and Singh, P. 2004 ConceptNet: A Practical

Commonsense Reasoning Toolkit. BT Technology Journal,

vol. 22, no. 4, pp. 211-226 (October 2004).

[17] Lucasfilm Games. 1990 The Secret of Monkey Island.

[18] McNaughton, M. and et al. 2004 ScriptEase: Generative

Design Patterns for Computer Role-Playing Games. In

International Conference on Automated Software

Engineering (Linz 2004).

[19] Mona, E. 2007 From the Basement to the Basic Set: The

Early Years of Dungeons & Dragons. In Second Person:

Role-Playing and Story in Games and Playable Media, P.

Harrigan and N. Wardrip-Fruin, Eds. Cambridge: The MIT

Press.

[20] Murray, J.H. 1997 Hamlet on the Holodeck: The Future of

Narrative in Cyberspace. New York: The Free Press.

[21] Oh, G. and Kim, J. Y. 2005 Effective Quest Design in

MMORPG Environment. In Game Developers Conference.

(San Francisco 2005).

[22] Rollings, A. and Morris, D. 2003 Game Architecture and

Design. Berkeley, CA, USA: New Riders Publishing.

[23] Rolston, K. 2009 My Story Never Ends. In Third Person:

Authoring and Exploring Vast Narratives, P Harrigan and N.

Wardrip-Fruin, Eds. Cambridge: The MIT Press.

[24] Salen, K. and Zimmerman, E. 2005 Game Design and

Meaningful Play. In Handbook of Computer Game Studies,

J. Raessens and J. Goldstein, Eds. Cambridge, MA: MIT

Press.

[25] Sheldon, L. 2004 Character Development and Storytelling

for Games. Boston: Thomson Course Technology PTR.

[26] Sierra Entertainment. 1984-1998 King's Quest.

[27] Square Enix. 1987-current Final Fantasy.

[28] Tosca, S. 2003 The Quest Problem in Computer Games. In

Technologies for Interactive Digital Storytelling and

Entertainment (TIDSE). (Darmstadt 2003).

[29] Walker, J. 2007 A Network of Quests in World of Warcraft.

In Second Person: Role-Playing and Story in Games and

Playable Media, P. Harrigan and N. Wardrip-Fruin, Eds.

Cambridge: The MIT Press.

[30] Wardrip-Fruin, N. Mateas, M., Dow, and Sali, S. 2009

Agency Reconsidered. In Breaking New Ground: Innovation

in Games, Play, Practice and Theory: International

Conference of the Digital Games Research Association.

(London 2009).

[31] Young, S. 2007 The DM of the Rings. [Online].

http://www.shamusyoung.com/twentysidedtale/?p=1017

